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Abstract  

Forecasting aggregate retail sales may improve portfolio investors’ ability to predict movements 
in the stock prices of the retailing chains. Therefore, this paper uses 26 (23 single and 3 
combination) forecasting models to forecast South Africa’s aggregate seasonal retail sales. We 
use data from 1970:01 – 2012:05, with 1987:01-2012:05 as the out-of-sample period. We deviate 
from the uniform symmetric quadratic loss function typically used in forecast evaluation 
exercises. Hence, we consider loss functions that overweight forecast error in booms and 
recessions to check whether a specific model that appears to be a good choice on average is also 
preferable in times of economic stress. To this end, we use the weighted RMSE and weighted 
version of the Diebold-Mariano tests to evaluate the different forecasts. Focussing on the single 
models alone, results show that their performances differ greatly across forecast horizons and for 
different weighting schemes. However, the combination forecasts models in general produced 
better forecasts and are largely unaffected by business cycles and time horizons.    

Key Words: seasonality, weighted loss, retail sales forecasting, combination forecasts, South 
Africa 

JEL Classification: C32, C53, E32 

 

1. Introduction 

The retail industry in South Africa is classified under the tertiary sector and falls within the 
wholesale and retail sub-sector (also known as the trade sub-sector). In 2011, the tertiary sector 
contributed 69.1 percent to the country’s economy. The wholesale and retail trade sub-sector 
contributed approximately 13.7 percent to the economy.  The retail trade and repairs of goods 
made the largest contribution (45 percent) within the wholesale and retail trade sub-sector (IHS, 
Global Insight, 2012; Gauteng Province: Provincial Treasury Quarterly Bulletin, 2012). This 
indicates that the retail industry drives the performance of the trade sub-sector. The retail 
industry contributes about 5.7 percent of total GDP. The retail industry is among the top 
industries in the country in terms of the share of employed labour force. The industry’s share of 
employment to the national total has been fluctuating around 7 percent. The highest 
contribution made by the retail industry to employment was in 2006 when it reached 7.9 percent. 
In 2010, 7.2 percent of employed people were in the retail industry. This placed the retail 
industry as the fifth largest employer in the country. At first place was, households at 10.5 
percent, followed by other business activities at 10.1 percent. Third place was held by education, 
which accounted for 7.5 percent of total employment and in fourth place was public 
administration and defence which accounted for 7.2 percent (IHS, Global Insight, 2012; 
Gauteng Province: Provincial Treasury Quarterly Bulletin, 2012). The South Africa retail industry 
is one of largest retail industry in the Sub Saharan region that presents profitable investment 
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opportunities for new players (RNCOS, 2011). The Global Retail Development Index (GRDI) 
annual publication ranks the top developing countries for retail expansion internationally where 
countries are ranked on a 100 point scale. A higher ranking translates to a greater urgency for 
retailers to enter the specific country. The GRDI scores are based on country and business risk, 
market attractiveness, market saturation and time pressure variables. In 2011, South Africa was 
ranked 26th out of 30 developing countries with a score of 42.2, a deterioration from the 24th 
rank of 2010 (41.7). At the top of the rankings was Brazil with a GRDI score of 71.5. Focusing 
on the individual components of GRDI, South Africa scored 46.9 percent on market 
attractiveness, 89.3 on country and business risk, 15.2 on market saturation and 17.2 on time 
pressure. However, South Africa dropped out from the 2012 rankings because of market 
saturation of international retailers compared to other countries in the GRDI (Kearney, 2011, 
2012). These statistics indicate the role of the retail industry in South Africa. 

 

 

The management of retail sales is of paramount importance to retail organisations and retail 
policy makers. Due to competition and globalization, sales forecasting plays a prominent role as 
part of the commercial enterprise (Xiao and Qi, 2008). Most retailers are constantly struggling to 
reduce their cost and increase profits. An accurate sales forecasting system is an efficient way to 
achieve these goals as reliable prediction of sales can improve the quality of business strategy. 
Forecasting of the future demand is central to the planning and operation of retail business at 
both macro and micro levels. At the organizational level, forecasts of sales are essential inputs to 
many decision activities in various functional areas such as marketing, sales, and 
production/purchasing, as well as finance and accounting (Mentzer and Bienstock, 1998; Zhang, 
2009). Sales forecasts also provide basis for regional and national distribution and replenishment 
plans. For profitable retail operations, accurate demand forecasting is crucial in organizing and 
planning purchasing, production, transportation, and labour force, as well as after sales services 
(Zhang, 2009). Therefore, the ability of retailing managers to estimate the probable sales quantity 
in the next period, can lead to improved customers’ satisfaction, reduced destruction of 
products, increased sales revenue and more effective and efficient production plan (Chen and 
Ou, 2011a, 2011b). Finally, retail trade sales are believed to be a very close proxy for 
consumption expenditures in a country, which in turn, is the most dominant component of the 
GDP. For a country like South Africa, where consumption data is available only at the quarterly 
frequency, forecasts of the retail sales at monthly frequency can give the policy makers an idea 
about the tentative path of consumption (even before and without data being available for the 
same at that specific point in time), and hence the GDP of the economy. 

 

Given the critical role of retail sales and the importance of its forecasting, this study is set out to 
forecast South Africa’s retail sales. Specifically, we focus on forecasting aggregate seasonal retail 
sales. Industry forecasts are especially useful to big retailers who may have a greater market share 
(Alon et al., 2001).  For the retailing industry, Peterson (1993) showed that large retails are more 
likely to use time-series methods and prepare industry forecasts, while small retails emphasize 
judgmental methods and company forecasts. Better forecasts of aggregate retail sales can 
improve the forecasts of individual retailers because changes in their sales levels are often 
systematic (Peterson, 1993). More accurate forecasts of aggregate retail sales may improve 
portfolio investors’ ability to predict movements in the stock prices of retailing chains (Barksdale 
and Hilliard, 1975; Thall; 1992; Alon et al., 2001). However, poor forecasting would result in 
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redundant or insufficient stock that will directly affect the revenue and competitive position 
(Agrawal and Schorling, 1996). 

 

Improving the quality of forecasts is still an outstanding question (Granger, 1996). In particular, 
retail sales data present strong seasonal variations. Forecasting of time series that have seasonal 
variations remains an important problem for forecasters. How to best deal with seasonal time 
series and which seasonal model is the most appropriate for a given time series are still largely 
unsolved (Zhang and Cline, 2007). Historically, modelling and forecasting seasonal data is one of 
the major research efforts and many theoretical and heuristic methods have been developed in 
the last several decades. The available traditional quantitative approaches include heuristic 
methods such as time-series decomposition and exponential smoothing as well as time-series 
regression and autoregressive and integrated moving average (ARIMA) models that have formal 
statistical foundations (Chu and Zhang, 2003). Nevertheless, their forecasting ability is limited by 
their assumption of a linear behaviour and thus, it is not always satisfactory (Zhang, 2003). Soft 
computing methods such as fuzzy logic, artificial neural networks (ANNs), and genetic 
algorithms offer an alternative, taking into account both endogenous and exogenous variables 
and allowing arbitrary non-linear approximation functions derived (learned) directly from the 
data. ANN models are the most commonly used non-linear forecasting models. As pointed out 
by Moreno et al. (2011), ANNs are not without limitations and criticisms. ANNs lack a 
theoretical foundation and a systematic procedure for the construction of the model, comparable 
to the classical approximations such as the Box-Jenkins methodology (Box and Jenkins, 1976). 
As a result, the construction phase of the model involves the experimental selection of a wide 
number of parameters by trial and error. According to Moreno et al. (2011), the most criticised 
aspect in the use of ANN focuses on the study of the effect and significance of the input 
variables of the model, due to the fact that the value of the parameters obtained by the network 
does not possess a practical interpretation, unlike classical statistical models. As a consequence, 
ANN have been presented to the user as a ‘black box’ as it is not possible to analyze the role 
played by each of the input variables in the forecast carried out. However, attempts are being 
made to overcome these criticisms (Hansen, et al., 1999; Montaño and Palmer, 2003; Palmer et 
al., 2008).  

 

From the foregoing, it is obvious that single forecasting models all have their own characteristics, 
strengths and weaknesses. Further, when employing a single model, only a certain point of the 
effective information can be used, showing that the range of information sources is insufficient 
(Wan et al., 2012).  Single model will also be affected by the model’s set conditions and other 
factors. These factors may deteriorate the accuracy of individual forecasting methods and 
increase the size of errors. Combining the different forecasts averages such errors (Makridakis, 
1989). The origin of forecast combination dates back to the seminal work of Bates and Granger 
(1969). Empirical findings in general show that combining improves forecasting accuracy and 
reduces the variance of post-sample forecasting errors (Makridakis and Winkler, 1983) and this 
holds true in statistical forecasting, judgmental estimates and when averaging statistical and 
subjective predictions (Clemen, 1989). However, it is important to also note that, Bates and 
Granger (1969) and more recently Kapetanios et.al. (2008) observed that the combination 
forecasting does not always necessarily lead to a better forecasting performance. Banternghansa 
and McCracken (2010) also added that averaging approach should be used and interpreted with 
caution whereas “past model performance does not always ensure future model performance”. 
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There are quite a number of forecast combining methods, some simple, others are sophisticated.1 
The theory of combination forecasting suggests that methods that weight better-performing 
forecasts more heavily will perform better than simple combination forecasts, and that further 
gains might be obtained by introducing time variation in the weights or by discounting 
observations in the distant past (Stock and Watson, 2004). However, empirical evidence has 
shown that simple forecast combining methods often outperform more complex methods.  

 

Against this background, this study uses twenty three single and three combination forecasting 
approaches to forecast South Africa’s aggregate seasonal retail sales.  There exist quite a large 
number of studies on retail sales forecasting.2 However, majority of these studies focus on 
individual retail sales forecasting. Despite the importance of retail sales and its forecasting and 
the large number of studies internationally, we are not aware of any study in South Africa on 
retail sales forecast. This study therefore contributes to the literature by forecasting South 
Africa’s retail sales, given our knowledge of the economic structure of the economy.  The 
performance of a particular model may be determined by the type of evaluation criteria 
employed. The use of improper criteria to evaluate forecasts may result in poor forecasting 
performance ( van Dijk and Franses, 2003). In order to have a comprehensive picture of the 
forecasting performance of the twenty six different models, the forecast accuracy of each model 
over the 1987:01–2012:05 out-of-sample period is evaluated using the root mean square error 
(RMSE).  However, the recent recession has demonstrated that a good forecast of a rather 
extreme event might be of special interest beyond that of minimizing an average squared error. 
Hence, we deviate from previous studies on retail sales forecasting by considering loss functions 
that overweight the forecast errors in either booms or recessions or both. We use van Dijk and 
Franses (2003) weighted mean square error to evaluate forecasts from different models.  In 
addition, the Harvey et al. (1997) modified Diebold Mariano (MDM) test is used to evaluate 
whether the average loss differences between two models is significantly different from zero. For 
the MDM test, a weighted version proposed by van Dijk and Franses (2003) and adopted by 
Carstensen et al. (2010) is employed.  

 

Our contributions are four folds. First, this is the first study on retail (aggregate or individual) 
sales forecasting in South Africa. Second, we are not aware of any study elsewhere that have 
applied large number (26) of seasonal forecasting models in the context of retail sales as done in 
this study. Third, this is the first study on retail forecasting that consider different weighting 
schemes for the standard loss function. Fourth, we employ three alternative forecast 
combination methods and we compare results from the 23 single models with the composite 
models.  

 

The rest of the paper is organized as follows. The next section discusses the literature on retail 
sales forecasting. The data and econometric methodology is discussed in section 3. The empirical 
results are reported in section 4. Section 5 concludes. 

                                                             
1For forecast combining methods, see Chan et al., 1999, Stock and Watson (2004), Rapach and Strauss (2010).  
2 See the literature subsection for a review of available studies on forecasting of retail (aggregate and individual) 
sales. 
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2. Literature  

In this section, we provide a review of empirical studies on retail (aggregate and individual) sales 
forecasting with a view to make clear the contribution of the current study. Alon (1997) found 
that the Winters’ exponential smoothing model forecasts aggregate retail sales more accurately 
than the simple exponential and Holt's models. Alon et al. (2001) and Chu and Zhang (2003) 
investigated the forecasting properties of artificial neural networks (ANN), Winters exponential 
smoothing, ARIMA models and multivariate regression, applied to aggregate retail sales and their 
results suggested that the ANN methods produce the best results.  Frank et al. (2003) forecast 
women’s apparel sales using three different forecasting models namely single seasonal 
exponential smoothing, Winters’ three parameter model, and ANNs. Their result indicates that 
ANN model outperform the other two models based on R2 evaluation.  Doganis et al. (2006) 
presented an evolutionary sales forecasting model which is a combination of two artificial 
intelligence technologies, namely the radial basis function and genetic algorithm. The 
methodology is applied successfully to sales data of fresh milk provided by a major 
manufacturing company of daily product. Chang and Wang (2006) integrated fuzzy logic and 
artificial neural network into the fuzzy back-propagation network (FBPN) for sales forecasting in 
Printed Circuit Board (PCB) industry. The results from FBPN are compared to those of Grey 
Forecasting (GF), Multiple Regression Analysis (MRA) and Back-propagation network (BPN). 
The experimental results indicate that the Fuzzy back-propagation approach outperforms other 
three different forecasting models in Mean Absolute Percentage Error (MAPE) measures. 

 

Aburto and Weber (2007) presented a hybrid intelligent system combining ARIMA model and 
MLP neural networks for demand forecasting. It shows improvements in forecasting accuracy 
and a replenishment system for a Chilean supermarket, which leads simultaneously to fewer sales 
and lower inventory levels. Joseph et al. (2007) examine out-of-sample forecasts of aggregate 
sales using 3-month treasury bills interest rate in NeuroSolutions environment referenced against 
forecasts of linear regression models. Two types of dynamic neural network models trained with 
the Levenberg-Marquardt back propagation algorithm under supervised learning were used.  The 
neural network models out-perform the linear regression models. Au et al. (2008) illustrated 
evolutionary neuron network for sales forecasting and showed that when guided with the BIC 
and the pre-search approach, the non-fully connected neuron network can converge faster and 
more accurate in forecasting for time series than the fully connected neuron network and 
traditional SARIMA model. Sun et al. (2008) also developed different sales forecasting models in 
fashion retailing. They applied ELM neural network model to investigate the relationship 
between sales amount and some significant factors which affect demand. The results 
demonstrate that the proposed methods outperform the back-propagation neural network 
model. Ali et al. (2009) explored forecasting accuracy versus data and model complexity trade-off 
in the grocery retailing sales forecasting problem, by considering a wide spectrum in data and 
technique complexity. The experiment results indicated that simple time series techniques 
perform very well for periods without promotions. However, for periods with promotions, 
regression trees with explicit features improve accuracy substantially. 

 

Chen et al. (2009) developed the GMFLN forecasting model by integrating GRA and MFLN 
neural networks. The experimental results indicated that the proposed forecasting model 
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outperforms the MA, ARIMA and GARCH forecasting models of the retail goods. Gil-Alana et 
al. (2010) examine whether retail sales forecasts can be better explained in terms of a model that 
incorporates both long run persistence and seasonal components in a fractional differencing 
framework than models that use integer degrees of differentiation. They find that retail sales 
forecasts are better explained in terms of a long memory model that incorporates both 
persistence and seasonal components. Chen and Ou (2011a, 2011b) developed the GELM model 
by integrating a Grey relation analysis (GRA) with extreme learning machine (ELM) to construct 
a forecasting model for fresh food retail industry. Results show that the GELM model 
outperforms the GARCH, GBPN, and GMFLN models. Ni and Fan (2011) proposed a two-
stage dynamic forecasting model, which is a combination of the ART model and error 
forecasting model based on neural network to improve the accuracy of fashion retail forecasting. 
However, their results are not compared to other forecasting models. 

 

Most studies emphasized different forms of neural network models and compared the forecast 
with few other forecasting models. These studies evaluate the forecasts from different models 
using the standard loss function which is essentially minimizing an average squared error.  
However, in this study, we consider twenty (26) seasonal forecasting ( 23 single and 3 combined) 
models for aggregate retail sales and we employ forecast evaluation techniques with different 
weighting schemes to see how each model performs in times of booms and recessions. None of 
these studies is conducted for South Africa. Hence, we focus on South Africa’s aggregate retail 
sales.  

 

3. Data and Methodology 

We use monthly aggregate sales data for South Africa covering 1970:01 to 2012:05 making a total 
of 509 observations. The period covers a number of economic events thereby capturing both the 
boom and the recession periods in South Africa. The data is sourced from Statistics South 
Africa. The full data set is split into two. We use data from 1970M1-1986M6 (204 observations) 
for in-sample. Data from 1987:01-2012:05 (305 observations) is used for the out-of-sample 
period. The plot of the seasonally adjusted aggregate retail sales series is shown in Figure 1 while 
its growth rate is plotted in Figure 2. There is a noticeable seasonal variation in the data. Figure 1 
shows that retail trade sales follow a particular pattern annually. Every December, retail sales 
figures spiked-upward and in January, a contraction occurred. This trend is explained by the 
tendencies of households to shop more during the December month since most people are on 
holiday or have received bonuses. In the month of January, consumer spending reduces as 
people prepare to go back to work or school and also pay off short-term debts incurred in 
December. The overall trend is an increase in retail trade sales. Figure 2 also depicts strong 
volatility with the highest peak in January 1987 (8.6%); thus justifying our choice of 1987:01-
2012:05  out-of-sample period.  
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Figure 1: Aggregate seasonal retail sales series in million rand 

 

 

Figure 2: Growth rate of aggregate seasonal retail sales 

 

3.1 Forecasting Models 

A model is identified using the in-sample data and then the same model recursively re-estimated 
and 1 to 24 step ahead forecasts are obtained recursively over the out-of-sample period. Only the 
parameters are re-estimated in the recursive forecasting, but identified model structure is kept 
constant. We have two classes of models. The acronyms and brief description of the models we 
used are presented in Table 1.3 The first class consists of 17 models with seasonal dummy 

                                                             
3
 However, given the pivotal role of forecast combination in this paper, detailed descriptions of the forecast 

combination models are given in the next sub-section. 
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variables. This is equivalent to deterministic seasonal adjustment. For instance for the ARIMA 
model we estimate, 

tts

s

st
d LdyL εθγµφ )()( ,

11

1

++=∆ ∑
=

        (1) 

where y  is the log of the aggregate retail sales and  tsd ,
  is a dummy variable taking value of one 

for month s .  At each recursive estimation, step dummy are included in the regression and 

forecasts of seasonal component is easily obtained from ts

s

s d ,

11

1

∑
=

+ γµ . The models are presented 

in panel A of Table 1.  When joint estimation of the seasonal component and non-seasonal 
component is not feasible, for Genetic Algorithm (GA) method for instance, seasonal 
component is pre-estimated using linear regression and non-seasonal component is forecasted in 

a second step; and final forecasts are recovered by adding ts

s

sd ,

11

1

∑
=

+ γµ . The second class consists 

of 9 full seasonal models. The models are presented in panel B of Table 1. In all models data is 
log of first differences, since there is a unit root. Level forecast are recovered from the forecasts 
of the growth rates. All model order are selected using BIC. In each case, forecasts were made at 
four horizons: 1, 4, 12 and 24 months. 

 

 

Table 1: Model description and specification 

S/N Code Description and specification 
A. Models with seasonal dummy variables. 

1. RW Random walk, equivalent to ARIMA(0,1,0) 
2. ARIMA Autoregressive integrated moving average, estimated model is ARIMA(2,1,0) 
3. ARFIMA Autoregressive fractionally integrated moving average, estimated model is ARFIMA(2,1+d,0) 
4. BARIMA Bayesian ARIMA model parameters are estimated to minimize the 24-step MSE once over the 

out-of-sample period.  We start with a long model with ARIMA (p,1,q) and where 12, ≤qp  . 
Estimates arising from minimizing 24-step MSE are used as informative priors in the 
recursive estimation. 

5. BCAR Bias corrected AR model, the estimated model is AR(2) with first differencing.  The method 
we used is described in Stine and Shaman (1989). 

6.  MSAR Markov Switching autoregressive model, estimated model is MS-AR(2) with 2 regimes and 
first differencing. 

7. SETAR Self-exciting threshold autoregressive model, estimated model is SETAR (k,p,d), with k=2 (# 
of regimes), p=2 (autoregression order) and d=1 (delay order). 

8. LSTAR Logistic smooth transition autoregressive model, estimated model is LSTAR (k,p,d), with k=2 
(# of regimes), p=2 (autoregression order) and d=1 (delay order). 

9. ARANN Autoregressive artificial neural network. Autoregressive order is 2. We use 3 hidden layers. 
The ANN is multi-layer perceptron (MLP) feed-forward network with hyperbolic-tangent 
(tansig) activation function for the hidden layers and a linear activation function for the 
output layer. 

10. NPAR Fully non-parametric (auto)regression, it is an autoregressive model with lag order equal to 2. 
11. SPAR Semi-parametric (auto)regression, it is an autoregressive model with lag order equal to 2. 
12. GARCH Generalized Autorregressive Conditional Heteroskedasticity model. We use ARIMA(2,1,0)-

EGARCH(1,1) model. 
13. GA This is the Genetic Algorithm based forecasting. Two lags are used as inputs (see Szpiro, 1997 

for the approach we used). Function appriximation is terminated at a maximum step of  3000.  
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14. FUZZY Evolutionary Fuzzy Modeling. The approach is taken from Reyes (2002). Fuzzy fitting uses 
200 population and 60000 generations. 

15. DISC Discounted forecast combination. The discount factor we used is 0.50. 
16. PC Principal components forecast combination. We used maximum of 4 principal components 

based on Bai and Ng (2002) method.   
17. MEAN Simple mean forecast combination. 

B. Full seasonal models 
1. SRW Seasonal random walk, ARIMA(0,1,0)(0,1,0), so both seasonal and regular random walk 

components exist. 
2. HW Holt-Winters methods, tree smoothing parameters are estimated. 
3. TBATS State space exponential smoothing model with trigonometric seasonal component (See 

Hyndman et al. 2002). 
4. SARANN Seasonal autoregressive ANN. The ANN is multi-layer perceptron (MLP) feed-forward 

network with hyperbolic-tangent (tansig) activation function for the hidden layers and a linear 
activation function for the output layer. We use the approach in Taskaya-Temizel and Casey 
(2005) to set the number of delays (AR order). A total of 9 hidden layers are used. 

5. SUTSEA Seemingly unrelated structural time series model with local trend and additive seasonal 
component (see Harvey, 2006). 

6. SUTSET Seemingly unrealted structural time series model with local trend and trigonometric seasonal 
component (see Harvey, 2006). 

7. SARIMA Seasonal ARIMA, the estimated model is SARIMA(2,1,0)(2,0,0). 
8. BSARIMA Bayesian SARIMA model parameters are estimated to minimize the 24-step MSE once over 

the out-of-sample period.  We start with a long model with ARIMA (p,1,q)(P,0,Q) and where 
4Q,,, ≤Pqp . Estimates arising from minimizing 24-step MSE are used as informative priors 

in the recursive estimation. 
9. SARFIMA Autoregressive fractionally integrated moving average, estimated model is ARFIMA 

(2,1+d,0)(2,0,0). 
 

3.1.1 Forecast Combination Methods 

Three forecast combination methods are considered: the simple forecasts (MEAN), the 
discounted MSFE (DISC) and the principal component (PC) methods. Our selection of these 
three is based on the good performance as reported in previous studies. The forecast 
combination methods differ in the way they use historical information to compute the 
combination forecast and in the extent to which the weight given an individual forecast is 
allowed to change over time. Some of the combining methods require a holdout period to 
calculate the weights used to combine the individual model forecasts, and we use the first P0 
observations from the out-of-sample period as the initial holdout period following Rapach and 
Strauss (2010). The combination forecasts of h

hty +  made at time t , ,ˆ , thtCB
h

y +  typically are a linear 
combination of the individual model forecasts 

h
thti

n

i

ti
h

ywy
thtCB +

=

∑=
+ ,

1

,
ˆˆ

,           (2) 

where .1
1

. =∑ =

n

i
tiw  When the weights, { } ,

1,
n

itiw
=

 are estimated, we use the individual out-of-

sample forecasts and h
hty +  observations available from the start of the holdout out-of-sample 

period to time t . For each of the combining methods, we compute combination forecasts over 
the post-holdout out-of-sample period. This leaves us with a total of 0)1( PhPPh −−−=

combination forecasts, { } hT

PRt

h

thtCB
y

−

+=+
0

,
ˆ , available for evaluation4.  

                                                             
4 We use 1987:01-1996:12 as the initial holdou out-ouf sample period. 
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Simple Combination Forecasts 

The simple combination forecasts compute the combination forecast without regard to the 
historical performance of the individual forecasts. Stock and Watson (1999, 2003, 2004) find that 
simple combining methods work well in forecasting inflation and output growth using a large 
number of potential predictors. Stock and Watson (2004) noted that there seems to be little 
difference between the mean and the trimmed mean forecast performance while the median 
typically has somewhat higher relative MSFE than either the mean or trimmed mean. Therefore, 
we consider the mean combination forecast (MEAN). The mean combination forecast simply 
involves setting nw ti /1, =  ),...,1( ni =  in (2). Thus, the simple combining methods do not require 
a holdout out-of-sample period.  

 

Discounted MSFE combination forecasts  

Following Stock and Watson (2004) and Rapach and Strauss (2010), we consider a combining 
method where the weights in (2) are a function of the recent historical forecasting performance 
of the individual models. The discounted MSFE combination (DISC) h-step-ahead forecast 
method has the form (2) where the weights are:  

∑
=

−−
=

n

j

tjtiti mmw

1

1
,

1
,, /            (3) 

where 2

,, )ˆ(
h

shsi
h

hs

ht

Rs

sht
ti yym

++

−

=

−− −=∑γ         (4) 

and  γ  is a discount factor. When 1=γ , there is no discounting, and (3) produces the optimal 
combination forecast derived by Bates and Granger (1969) for the case where the individual 
forecasts are uncorrelated. When   1<γ , greater importance is attached to the recent forecasting 
accuracy of the individual models. We consider γ  value of 0.5. The results are the same with a γ  
value of 0.70. Although, this seems to be a low discount factor, however, it may due to the 
seasonal time series we are forecasting and recent past is the most important, weights given to 
past forecast required to decline very fast in our case. 

 

Principal component forecast combination 

Principal component forecast combination (PC) requires (i) recursively computing the first few 
principal components of estimated common factors of the panel of forecasts, (ii) estimating a 
regression of h

shsy +
 onto these principal components, and (iii) forming the forecast based on this 

regression (Stock and Watson, 2004). Reduction of the many forecasts to a few principal 
components provides a convenient method for allowing some estimation of factor weights, yet 
reduces the number of weights that must be estimated. This method has been used by Chan et 
al. (1999), Stock and Watson (2004) and Rapach and Strauss (2010) among others. One 
motivation for use of PC is that, recent work on large forecasting models suggests that large 
macroeconomic data sets are well described by a few common dynamic factors that are useful 
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for forecasting, and that the common factors can be estimated by principal components (Forni, 
et al., 2000, 2001; Stock and Watson, 1999, 2002, 2004).  

 

The principal component forecasts are constructed as follows. Let h
shsm

h
shs FF ++ ,,1

ˆ,...,ˆ  for tRs ,...,=

denote the first m  principal components of the uncentered second-moment matrix of the 
individual model forecasts, h

shsiy +,
ˆ  ),...,;,...,1( tRsni == . To form a combination forecast of h

hty +  

at time t  based on the fitted principal components, we estimate the following regression model 

h
hs

h
shsmm

h
shs

h
hs vFFy ++++ +++=

,,11
ˆ...ˆ θθ          (5) 

where htRs −= ,..., . The combination forecast is given by h
shsmm

h
shs FF ++ ++

,,11
ˆ...ˆ θθ , where mθθ ˆ,...,ˆ

1

are OLS estimates of mθθ ,...,1 , respectively, in (5). We use the ICp3 information criterion 
developed by Bai and Ng (2002) to select m  (considering a maximum value of 4) when 
calculating combination forecasts using the PC method. Bai and Ng (2002) show that familiar 
information criteria such as the Akaike information criterion (AIC) and Schwarz Bayesian 
information criterion (SIC) do not always consistently estimate the true number of factors, and 
they develop alternative criteria that consistently estimate the true number of factors under more 
general conditions. In extensive Monte Carlo simulations and using a large sample size as in our 
study, Bai and Ng (2002) find that the ICp3 criterion performs well in selecting the correct 
number of factors. 

 

3.2 Forecast Evaluation using Weighted Loss Functions 

The standard period- t  loss function used in most of the forecast evaluation literature is the 
squared forecast error 

2
,, titi eL =            (6) 

where f
tti

ti
yye

,
, −=  is the forecast error of model i , ty  is the realization of the target variable, y, 

aggregate retail sales in our case,  f

ti
y

,
 is the value predicted by model i . Comparing the average 

loss difference of two competing models 1 and 2 implies computing their mean squared forecast 
errors  

,
1

1

2
,∑

+

+=

=

PT

Tt

tii e
P

MSFE  ,2,1=i          (7) 

over the forecast period 1+T to PT + and choosing the model with the smaller MSFE.5   

 

However, according to Carstensen et al. (2010), there are many occasions in which different loss 
functions can make more sense for the applied forecaster but also for the user of a forecast such 

                                                             
5 RMSE is simply the square root of MSFE 
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as a politician or the CEO of a company. For instance, the case of the recent recession which 
demonstrated that a good forecast of a rather extreme event might be of special interest beyond 
that of minimizing an average squared error. Consequently, banks could have taken earlier 
measures to shelter against the turmoil, governments could have started stimulus packages in 
time, and firms might have circumvented their strong increase in inventories. This is in line with 
van Dijk and Franses (2003) argument that a weighted squared forecast error can be used to 
place more weight on unusual events when evaluating forecast models. Following van Dijk and 
Franses (2003) and Carstensen et al. (2010), we use a weighted squared forecast error. Hence, the 
loss function in (6) can be re-specified as: 

2
,, tit

w
ewL

ti
=              (8) 

where the weight 
 
w

t
 is specified as  

1. )(ˆ1, ttleft yFw −= , where )(⋅F is the cumulative distribution function of ty , to overweight the 

left tail of the distribution. This gives rise to a “recession” loss function. 

2. )(ˆ
, ttright yFw = , to overweight the right tail of the distribution. This gives rise to a “boom” loss 

function. 

3. ))(ˆmax()(ˆ1, ttttail yFyFw −= , where )(⋅F  is the density function of ty , which allows to focus on 
both tails of the distribution given rise to both recession and boom loss function.  

When equal weights, 
  
w

t
= 1 are imposed, the weighted loss function (8) collapses to the standard 

loss function (6) giving rise to the conventional “uniform” loss function. 

 

To evaluate a forecast model i  over a forecast period 1+T to PT +  using the weighted loss 
function simply requires calculating the weighted mean squared forecast error  

  

MSFE
i
=

1

P
w

t
e

i,t

2

t=T +1

T +P

∑ ,          (9) 

In order to compare, say, model i  to a benchmark model 0, one calculates the weighted loss 
difference 

2
,

2
,0,,0, tittt

w
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w
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and averages over the forecast period 
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We use this weighted loss and analyse the forecast accuracy of different models with respect to 
the different weighting schemes introduced above. There is large number of tests proposed in 
the literature to analyse whether empirical loss differences between two or more competing 
models are statistically significant. The most influential and most widely used is the pairwise test 
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introduced by Diebold and Mariano (1995). In this study, we employ the modified Diebold-
Mariano (MDM) test proposed by Harvey et al. (1997), which corrects for small sample bias. 
MDM test is a pairwise test designed to compare two models at a time, say, model i  with 
benchmark model 0. The null hypothesis of the MDM test is that of equal forecast performance, 

[ ] [ ] 0,,0, =−= w
ti

w
tti LLEdE            (12) 

Following Harvey et al. (1997), we use the modified Diebold-Mariano test statistic  

 
)(ˆ

/)1(21

i

i

dV

d

P

PhhhP
MDM

−+−+
=        (13) 

where h is the forecast horizon and  )(ˆ
idV is the estimated variance of series tid , . The MDM test 

statistic is compared with a critical value from the t-distribution with 1−P  degrees of freedom. 

 

The forecasting performance of a candidate forecast is also evaluated by comparing its out-of-
sample RMSE to the benchmark forecast following Chan et al (1999), Stock and Watson (2004) 
and Rapach and Strauss (2010). The benchmark forecast used here is from the random walk 
(RW) model. If the candidate forecast has a relative RMSE less than one, then it outperformed 
the RW benchmark over the forecast period.  

 

4.  Empirical Results 

In this section, we report the results from all the 26 aggregate retails forecasting models. We first 
present the uniform, boom, recession, and boom and recession weighted RMSE and their 
corresponding ranks. These results are presented in Tables 2, 3, 4 and 5 for horizons of 1, 4, 12 
and 24, respectively. The rankings in most -but by far not in all- cases differ greatly between 
boom and recession periods and even at different forecast horizons. In general, models with 
seasonal dummy variables seem to have smaller RMSE than full seasonal models. Also as a 
general result, the average forecast errors based on the uniform weighting scheme are strongly 
driven by the forecast errors made during booms which are substantially higher than during 
recessions. This holds true for all models and forecast horizons. It implies that improvements in 
terms of model building should aim at better predictions of boom periods. 

 

Table 2: Root Mean Squared Forecast Errors  (h=1)  

 
Uniform 

 
Boom 

 
Recession 

 
Tail 

Model RMSE Rank 
 

RMSE Rank 
 

RMSE Rank 
 

RMSE Rank 
RW 0.0252 15 

 
0.0193 15 

 
0.0074 13 

 
0.0112 14 

DISC 0.0139 1 
 

0.0109 1 
 

0.0039 2 
 

0.0057 2 
PC 0.0180 3 

 
0.0136 3 

 
0.0058 3 

 
0.0086 3 

MEAN 0.0209 4 
 

0.0154 8 
 

0.0067 4 
 

0.0101 5 
ARIMA 0.0217 12 

 
0.0166 14 

 
0.0068 5 

 
0.0100 4 

ARFIMA 0.0213 9 
 

0.0159 12 
 

0.0070 7 
 

0.0103 6 
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BARIMA 0.0264 16 
 

0.0205 16 
 

0.0074 14 
 

0.0114 16 
BCAR 0.0213 8 

 
0.0157 9 

 
0.0072 10 

 
0.0106 9 

MSAR 0.0150 2 
 

0.0121 2 
 

0.0038 1 
 

0.0057 1 
SETAR 0.0212 7 

 
0.0153 7 

 
0.0070 8 

 
0.0105 8 

LSTAR 0.0209 5 
 

0.0153 6 
 

0.0069 6 
 

0.0103 7 
ARANN 0.0215 11 

 
0.0158 11 

 
0.0072 11 

 
0.0107 10 

NPAR 0.0210 6 
 

0.0148 4 
 

0.0073 12 
 

0.0109 12 
SPAR 0.0218 13 

 
0.0159 13 

 
0.0071 9 

 
0.0108 11 

GARCH 0.0374 24 
 

0.0282 24 
 

0.0117 22 
 

0.0177 22 
GA 0.0215 10 

 
0.0152 5 

 
0.0078 16 

 
0.0113 15 

FUZZY 0.0219 14 
 

0.0157 10 
 

0.0076 15 
 

0.0111 13 
SRW 0.0325 21 

 
0.0235 22 

 
0.0109 21 

 
0.0161 21 

HW 0.0285 18 
 

0.0221 19 
 

0.0095 17 
 

0.0131 17 
TBATS 0.0367 23 

 
0.0273 23 

 
0.0124 24 

 
0.0180 24 

SARANN 0.0329 22 
 

0.0222 20 
 

0.0118 23 
 

0.0180 23 
SUTSEA 0.0292 19 

 
0.0228 21 

 
0.0096 18 

 
0.0133 18 

SUTSET 0.1031 26 
 

0.0738 26 
 

0.0378 26 
 

0.0537 26 
SARIMA 0.0278 17 

 
0.0208 17 

 
0.0098 19 

 
0.0136 19 

BSARIMA 0.0471 25 
 

0.0338 25 
 

0.0179 25 
 

0.0248 25 
SARFIMA 0.0297 20 

 
0.0214 18 

 
0.0105 20 

 
0.0150 20 

Notes: This Table reports the root MSFEs and the corresponding ranking for each forecasting horizon and weighting 
scheme. 

 

Interestingly, the combination forecasts especially the DISC and PC models outperform the 
single or individual forecast models. The outstanding performance of the DISC appears to be 
robust to both the weighting scheme and forecast horizons taking the first rank in 12 cases out 
of 16 and 2nd for the remaining 4 cases. This implies that the DISC model has the smallest 
RMSE in general. Following closely to the DISC is the PC model. However, we observe that at 
medium and longer term horizons (h=12 and h=24), the PC model’s performance for either the 
recession forecasts or tail forecasts is not quite impressive as it takes the rank of between 6th and 
18th for these cases.  Another interesting finding in this study with respect to RMSE evaluation 
criterion is that the more sophisticated forecast combination methods outperformed the simple 
mean combination method unlike other studies cited previously.  

 

Table 3: Root Mean Squared Forecast Errors  (h=4)  

 
Uniform 

 
Boom 

 
Recession 

 
Tail 

Model RMSE Rank 
 

RMSE Rank 
 

RMSE Rank 
 

RMSE Rank 
RW 0.0334 15 

 
0.0239 15 

 
0.0127 18 

 
0.0176 16 

DISC 0.0227 1 
 

0.0174 1 
 

0.0071 1 
 

0.0104 1 
PC 0.0276 2 

 
0.0201 2 

 
0.0102 4 

 
0.0143 3 

MEAN 0.0298 11 
 

0.0220 11 
 

0.0105 6 
 

0.0150 6 
ARIMA 0.0292 5 

 
0.0228 14 

 
0.0094 2 

 
0.0133 2 



15 

 

ARFIMA 0.0291 4 
 

0.0215 8 
 

0.0105 7 
 

0.0148 5 
BARIMA 0.0348 16 

 
0.0264 16 

 
0.0111 13 

 
0.0161 14 

BCAR 0.0295 8 
 

0.0213 6 
 

0.0112 15 
 

0.0157 13 
MSAR 0.0300 12 

 
0.0225 13 

 
0.0099 3 

 
0.0144 4 

SETAR 0.0295 7 
 

0.0214 7 
 

0.0104 5 
 

0.0151 7 
LSTAR 0.0292 6 

 
0.0212 4 

 
0.0106 11 

 
0.0151 9 

ARANN 0.0297 9 
 

0.0216 9 
 

0.0110 12 
 

0.0155 12 
NPAR 0.0289 3 

 
0.0206 3 

 
0.0105 9 

 
0.0152 11 

SPAR 0.0297 10 
 

0.0217 10 
 

0.0106 10 
 

0.0152 10 
GARCH 0.0415 22 

 
0.0324 23 

 
0.0111 14 

 
0.0177 17 

GA 0.0310 14 
 

0.0212 5 
 

0.0131 19 
 

0.0178 18 
FUZZY 0.0301 13 

 
0.0223 12 

 
0.0105 8 

 
0.0151 8 

SRW 0.0414 21 
 

0.0311 22 
 

0.0136 21 
 

0.0194 21 
HW 0.0381 20 

 
0.0294 20 

 
0.0135 20 

 
0.0181 20 

TBATS 0.0471 23 
 

0.0341 24 
 

0.0162 23 
 

0.0240 23 
SARANN 0.0477 24 

 
0.0289 19 

 
0.0178 24 

 
0.0290 24 

SUTSEA 0.0378 19 
 

0.0300 21 
 

0.0120 16 
 

0.0166 15 
SUTSET 0.1087 26 

 
0.0798 26 

 
0.0389 26 

 
0.0549 26 

SARIMA 0.0371 17 
 

0.0277 18 
 

0.0126 17 
 

0.0180 19 
BSARIMA 0.0698 25 

 
0.0487 25 

 
0.0278 25 

 
0.0388 25 

SARFIMA 0.0376 18 
 

0.0272 17 
 

0.0136 22 
 

0.0195 22 
Notes: see notes to Table 2. 

 

We can generally infer that the relative performance of the DISC model is unaffected by the 
specific economic conditions. Another model that seems to perform fairly well is the MSAR. 
This is particularly so for the shortest (ranking 1st for recession and tail forecasts and 2nd for 
boom and uniform forecasts) and longest term forecasts (with a rank of 3 for both uniform and 
tail forecasts and 5 for both boom and recession forecasts).  However, for the rest of the models, 
the rankings in most cases differ greatly between boom and recession periods and even at 
different forecast horizons. Take the GARCH model for instance: while it seems to be the most 
useful model for recession forecasts with a rank of 1 at h=24; it ranks 21st for the boom 
forecasts. The same model ranks 22nd and 24th for the recession and boom forecasts respectively 
at h=1, 23rd  and 14th  at h=4 and 25th  and 2nd at h=12.   

   

Table 4: Root Mean Squared Forecast Errors  (h=12)  

 
Uniform 

 
Boom 

 
Recession 

 
Tail 

Model RMSE Rank 
 

RMSE Rank 
 

RMSE Rank 
 

RMSE Rank 
RW 0.0577 18 

 
0.0335 7 

 
0.0297 23 

 
0.0393 23 

DISC 0.0400 1 
 

0.0278 1 
 

0.0159 1 
 

0.0221 1 
PC 0.0469 2 

 
0.0299 2 

 
0.0209 10 

 
0.0289 6 

MEAN 0.0483 4 
 

0.0315 3 
 

0.0205 7 
 

0.0289 5 



16 

 

ARIMA 0.0478 3 
 

0.0325 5 
 

0.0189 3 
 

0.0271 2 
ARFIMA 0.0506 6 

 
0.0322 4 

 
0.0228 18 

 
0.0313 18 

BARIMA 0.0512 9 
 

0.0337 9 
 

0.0218 15 
 

0.0304 10 
BCAR 0.0521 10 

 
0.0325 6 

 
0.0240 21 

 
0.0328 20 

MSAR 0.0509 7 
 

0.0344 13 
 

0.0209 11 
 

0.0293 7 
SETAR 0.0524 12 

 
0.0355 17 

 
0.0209 9 

 
0.0298 9 

LSTAR 0.0522 11 
 

0.0341 11 
 

0.0222 17 
 

0.0310 17 
ARANN 0.0529 15 

 
0.0337 10 

 
0.0236 19 

 
0.0326 19 

NPAR 0.0526 14 
 

0.0348 14 
 

0.0215 13 
 

0.0306 12 
SPAR 0.0525 13 

 
0.0349 16 

 
0.0219 16 

 
0.0307 13 

GARCH 0.0598 24 
 

0.0443 25 
 

0.0179 2 
 

0.0283 4 
GA 0.0595 21 

 
0.0348 15 

 
0.0305 25 

 
0.0402 24 

FUZZY 0.0541 16 
 

0.0366 20 
 

0.0218 14 
 

0.0309 14 
SRW 0.0590 20 

 
0.0417 22 

 
0.0203 5 

 
0.0305 11 

HW 0.0587 19 
 

0.0388 21 
 

0.0238 20 
 

0.0339 22 
TBATS 0.0612 25 

 
0.0363 19 

 
0.0299 24 

 
0.0402 25 

SARANN 0.0509 8 
 

0.0342 12 
 

0.0212 12 
 

0.0298 8 
SUTSEA 0.0597 23 

 
0.0421 24 

 
0.0204 6 

 
0.0310 16 

SUTSET 0.1122 26 
 

0.0775 26 
 

0.0430 26 
 

0.0616 26 
SARIMA 0.0595 22 

 
0.0417 23 

 
0.0206 8 

 
0.0309 15 

BSARIMA 0.0554 17 
 

0.0356 18 
 

0.0243 22 
 

0.0338 21 
SARFIMA 0.0495 5 

 
0.0335 8 

 
0.0196 4 

 
0.0281 3 

Notes: see notes to Table 2. 

 

If we focus on different horizons, we can easily pick out the best three models for recession or 
boom forecasts. For example, at the shortest term horizon (h=1), the top three models for 
booms are DISC, MSAR and PC models in that order while the top three models for recessions 
are MSAR, DISC and PC models. At the 4-month horizon, the top three models for booms are 
DISC, PC and NPAR models while the top three models for recessions are DISC, ARIMA and 
MSAR models. At the 12-month horizon, the top three models for booms are DISC, PC and 
MEAN models while the top three models for recessions are DISC, GARCH and ARIMA 
models.  At the longest term horizon (h=24), the top three models for booms are PC, DISC and 
ARFIMA models while the top three models for recessions are GARCH, DISC and SETAR 
models. In practice, the choice of an appropriate model may depend on both the forecast 
horizon and on the specific loss function. Forecasters who particularly dislike forecast errors 
during recessions should use a slightly different set of models than forecasters who are more 
interested in correct boom prediction. This is consistent with the findings in Carstensen et al., 
2010). 

Table 5: Root Mean Squared Forecast Errors  (h=24)  

 
Uniform 

 
Boom 

 
Recession 

 
Tail 

Model RMSE Rank 
 

RMSE Rank 
 

RMSE Rank 
 

RMSE Rank 
RW 0.0997 19 

 
0.0544 9 

 
0.0550 24 

 
0.0714 23 

DISC 0.0692 1 
 

0.0454 2 
 

0.0326 2 
 

0.0416 1 
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PC 0.0823 2 
 

0.0451 1 
 

0.0451 18 
 

0.0581 17 
MEAN 0.0857 6 

 
0.0536 8 

 
0.0407 11 

 
0.0544 11 

ARIMA 0.0851 5 
 

0.0533 6 
 

0.0406 10 
 

0.0539 10 
ARFIMA 0.0873 7 

 
0.0520 3 

 
0.0426 15 

 
0.0571 15 

BARIMA 0.0848 4 
 

0.0535 7 
 

0.0391 9 
 

0.0530 7 
BCAR 0.0877 8 

 
0.0520 4 

 
0.0424 14 

 
0.0572 16 

MSAR 0.0831 3 
 

0.0528 5 
 

0.0374 5 
 

0.0510 3 
SETAR 0.0899 15 

 
0.0597 19 

 
0.0359 3 

 
0.0514 4 

LSTAR 0.0881 11 
 

0.0559 12 
 

0.0387 8 
 

0.0536 8 
ARANN 0.0895 14 

 
0.0552 11 

 
0.0408 12 

 
0.0561 13 

NPAR 0.0880 10 
 

0.0573 15 
 

0.0369 4 
 

0.0520 5 
SPAR 0.0879 9 

 
0.0567 13 

 
0.038 6 

 
0.0529 6 

GARCH 0.0947 18 
 

0.0675 21 
 

0.032 1 
 

0.0481 2 
GA 0.1029 20 

 
0.0583 16 

 
0.0549 23 

 
0.0716 24 

FUZZY 0.0926 16 
 

0.0617 20 
 

0.0382 7 
 

0.0538 9 
SRW 0.1202 24 

 
0.0854 24 

 
0.0471 20 

 
0.0659 20 

HW 0.1159 22 
 

0.0800 22 
 

0.0496 22 
 

0.0669 21 
TBATS 0.1064 21 

 
0.0567 14 

 
0.0566 25 

 
0.0754 25 

SARANN 0.0885 12 
 

0.0548 10 
 

0.0431 16 
 

0.0569 14 
SUTSEA 0.1211 25 

 
0.0855 25 

 
0.0475 21 

 
0.0670 22 

SUTSET 0.1504 26 
 

0.1024 26 
 

0.0610 26 
 

0.0862 26 
SARIMA 0.1166 23 

 
0.083 23 

 
0.0462 19 

 
0.0644 19 

BSARIMA 0.0939 17 
 

0.0586 18 
 

0.0435 17 
 

0.0590 18 
SARFIMA 0.0894 13 

 
0.0586 17 

 
0.0409 13 

 
0.0545 12 

Notes: see notes to Table 2. 

Next we also evaluate the forecasting models based on their RMSE relative to the benchmark 
RW forecast.6 If the relative RMSE of any model is less than 1, then it outperformed the RW 
model. Almost all the models with seasonal dummy variables outperformed the benchmark RW 
model whereas the RW model outperformed all the full seasonal models at the 1-month and 4-
month horizons. This is robust to different weighting schemes. However, at 12-month and 24-
month horizons both full seasonal models and models with seasonal dummy variables 
outperformed the RW model especially for the recession and tail forecasts.  It is also observed 
that the DISC combined forecast has substantial gains over both the benchmark RW and the 
rest individual models. For instance, the RMSE for DISC model is lower than the RMSE for the 
RW model by about 43% and 48%, respectively for the boom and recession forecasts at horizon 
one. However, this gain reduces as one progress to longer horizons. Looking at horizon 24, the 
gain relative to RW model reduces to 26% and 41%, respectively, for the boom and recession 
forecasts.  MSAR is the best individual model at horizon one with an improvement of 37% and 
48%, respectively, for the boom and recession forecasts. At the 24-month horizon, the best 
individual performing model for the recession forecasts is GARCH with an improvement of 
42% over the RW model whereas for the boom period the RMSE of the former is 24% higher 
than the later. The best performing individual model (ARFIMA) for the boom forecasts 
improves upon the RW model by only 4% at h=24. Overall, the performance of the models 
relative to the RW model differs by both forecast horizon and different weighting schemes.  
                                                             
6 The relative values are essentially the ratio of each model to the RW model. We do not present the results here but 
they are available upon request. 
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To evaluate whether the above findings are statistically significant, we employ the weighted 
version of modified Diebold-Mariano pair-wise test. The null hypothesis of the MDM test is that 
of equal forecast performance. The result is reported in Tables 6-7.7 The columns with heading 
“+” indicate the number of times a specific model significantly outperforms its competitors. The 
columns with heading “−” indicate the number of times a specific model is outperformed by its 
competitors. Recalling we have 26 forecasting models, a rank of 25 is therefore the maximum a 
specific model can either outperform other models or be outperformed by other models. At the 
1-month horizon, the DISC and the MSAR models significantly outperform the rest competing 
models 24 times and were not significantly dominated by any other model. This simply implies 
that these two models yield significantly smaller losses than their competitors. The next good 
performing model is the PC model. These results are robust to the different weighting schemes.  
At horizon 4, the DISC model significantly outperforms the rest 25 models and is not 
outperformed by any other irrespective of the weighting scheme used. Following the DISC 
model is the PC model. A similar result holds at the 12-month horizon with the exception that 
the PC model did not perform equally well for the recession and tail forecasts.  At horizon 24, 
the DISC model is again the best performing model. This is followed by PC model for the boom 
forecasts and BARIMA model for the uniform and recession forecasts. The worst performing 
model at all horizons and weighting schemes is the SUTSET as it never outperform any model 
significantly but is rather significantly dominated by other models. 

 

 

 

Table 6: Summary of Modified Diebold-Mariano Forecast Accuracy Tests(h=1 and h=4) 
             

 
h=1 h=4 

 
Uniform Boom Recession Tail Uniform Boom Recession Tail 

Model + − + − + − + − + − + − + − + − 

RW 10 14 8 14 11 12 10 9 10 14 11 12 7 13 4 13 

DISC 24 0 24 0 24 0 24 0 25 0 25 0 25 0 25 0 

PC 23 2 23 2 23 2 23 2 21 1 18 1 21 1 20 1 

MEAN 12 3 12 3 13 3 13 3 12 2 12 2 13 3 12 3 

ARIMA 12 3 12 6 12 3 15 3 12 1 12 2 18 1 22 1 

ARFIMA 12 3 13 3 14 3 15 3 13 2 12 1 15 2 15 2 

BARIMA 6 15 5 15 9 15 7 12 6 14 5 15 8 13 6 13 

BCAR 12 3 13 3 13 4 13 3 13 2 12 1 13 5 12 4 

MSAR 24 0 24 0 24 0 24 0 12 2 11 2 13 1 12 1 

SETAR 12 3 12 3 12 3 12 3 12 2 12 1 13 1 12 2 

LSTAR 12 3 13 3 16 3 14 3 14 1 14 1 15 2 12 3 

ARANN 12 3 12 3 12 5 12 6 12 2 12 1 13 5 12 4 

NPAR 12 3 13 3 12 3 11 3 13 1 12 1 13 2 12 3 

SPAR 12 3 12 4 12 3 11 3 12 2 12 3 13 3 12 3 

GARCH 2 21 2 22 2 21 2 20 3 16 2 18 3 14 3 13 

                                                             
7 We report only the rankings and show the best model in bold. The MW-DM statistics with the p-values are 
available from authors upon request. 
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GA 12 3 12 3 11 7 10 9 12 6 12 2 7 13 5 13 

FUZZY 12 3 12 3 11 4 10 5 12 3 11 3 13 3 12 3 

SRW 3 19 3 18 3 20 2 20 3 19 2 18 3 18 3 16 

HW 5 15 4 14 6 16 7 15 3 15 3 15 3 16 4 13 

TBATS 2 20 2 21 2 20 2 20 2 22 2 20 2 22 2 22 

SARANN 2 17 4 16 2 19 2 19 2 16 2 15 2 18 2 19 

SUTSEA 4 15 4 16 6 16 7 15 4 15 3 15 5 13 5 4 

SUTSET 0 25 0 25 0 25 0 25 0 25 0 25 0 25 0 25 

SARIMA 6 14 7 14 7 15 7 15 4 15 5 15 5 13 5 13 

BSARIMA 1 24 1 24 1 24 1 24 1 24 1 24 1 24 1 24 

SARFIMA 5 15 5 14 5 17 5 19 4 15 5 15 3 16 3 15 
Notes: The columns “+” indicate the number of times a specific model significantly outperforms its competitors. 
The columns “-” indicate the number of times a specific model is outperformed by its competitors. 

 

Overall, there appears to be no single model that performs relatively better than other single 
models at all forecast horizons and for all weighting schemes. It is MSAR at horizon 1 for all 
weighting schemes, ARFIMA for recession and tails forecasts and LSTAR for uniform and 
boom and also recession forecasts at horizon 4. At horizon 12, it is ARIMA for recession and 
ARFIMA for boom forecasts. At horizon 24, it is ARFIMA for the boom and BARIMA model 
for the uniform and recession forecasts.  However, the combination forecasts, especially the 
DISC model forecast is the best at all horizons no matter which weighting scheme is employed. 
These findings confirm the superiority of combined forecasts over individual forecasts for 
forecasting South Africa’s aggregate retail sales. 

Table 7: Summary of Modified Diebold-Mariano Forecast Accuracy Tests (h=12 and h=24)  

 
h=12 h=24 

 
Uniform Boom Recession Tail Uniform Boom Recession Tail 

Model + − + − + − + − + − + − + − + − 

RW 1 9 6 2 1 17 1 16 1 3 5 2 1 18 1 18 

DISC 25 0 25 0 25 0 25 0 25 0 24 0 25 0 25 0 

PC 22 1 22 1 10 1 9 1 12 1 24 0 8 1 5 1 

MEAN 21 1 19 1 15 1 13 1 11 1 12 2 10 1 10 1 

ARIMA 15 1 10 1 19 1 17 1 10 1 11 2 10 1 10 1 

ARFIMA 13 3 15 2 8 5 7 3 8 1 16 2 7 3 5 4 

BARIMA 10 3 8 3 8 3 7 1 13 1 15 2 13 1 10 1 

BCAR 7 4 14 2 4 8 4 9 8 2 15 2 5 3 5 4 

MSAR 7 3 6 3 8 2 8 1 11 1 10 2 12 1 9 1 

SETAR 5 3 6 6 8 1 9 1 8 1 6 12 10 1 6 1 

LSTAR 6 3 9 5 6 3 6 3 9 1 8 4 10 1 7 2 

ARANN 4 5 8 5 4 13 4 12 7 3 8 5 5 6 5 6 

NPAR 5 4 5 5 7 3 5 4 9 1 8 5 11 1 8 1 

SPAR 5 4 7 5 7 3 6 3 10 1 8 5 10 1 10 1 

GARCH 1 16 1 18 3 1 3 1 5 6 5 16 8 1 8 1 
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GA 1 15 1 5 1 18 1 18 1 14 5 6 1 18 0 18 

FUZZY 3 8 2 11 4 5 4 4 6 10 6 13 8 3 5 2 

SRW 1 9 1 17 2 3 1 2 1 18 1 21 1 15 1 5 

HW 1 13 1 11 2 12 1 8 1 18 1 21 1 18 1 17 

TBATS 1 17 1 14 1 21 1 18 1 17 5 9 0 18 0 18 

SARANN 10 4 7 3 7 4 8 3 8 3 10 2 8 4 5 4 

SUTSEA 1 8 1 17 1 2 1 2 1 18 1 21 1 14 1 5 

SUTSET 0 25 0 25 0 25 0 25 0 25 0 25 0 24 0 23 

SARIMA 1 8 1 17 2 4 1 4 1 18 1 21 1 15 1 5 

BSARIMA 2 10 5 7 4 13 3 13 6 11 5 9 5 9 4 9 

SARFIMA 11 2 8 3 13 1 10 1 7 4 6 7 8 1 8 1 
Notes: The columns “+” indicate the number of times a specific model significantly outperforms its competitors. 
The columns “-” indicate the number of times a specific model is outperformed by its competitors. 

 

5. Conclusion 

In this paper, we assess the forecasting performance of 26 models of South Africa’s aggregate 
seasonal retail sales over 1987:01 – 2012:05 out-of-sample period.  The recent recession has 
demonstrated that a good forecast of a rather extreme event might be of special interest beyond 
that of minimizing an average squared error. Hence, we allowed for departures from the uniform 
symmetric quadratic loss function typically used in forecast evaluation exercises. We overweighed 
forecast errors during periods of high or low growth rates to check how the indicators perform 
during booms and recessions, i.e., in times of particularly high demand for good forecasts. 
Specifically, we use van Dijk and Franses (2003) weighted MSFE and weighted modified MDM 
tests to evaluate forecasts from the 26 different forecasting models. We estimated two broad 
classes of modes: 17 models with seasonal dummy variables and 9 full seasonal models. In 
general, the models with seasonal dummy variables produce better forecasts than full seasonal 
models. Most of the models performed better than the random work benchmark.   From the 
analysis, it is difficult to identify a specific individual model as the best for forecasting South 
Africa’s aggregate retail sales. Some single models are well suited for booms while others are well 
suited for recessions and this differ across forecast horizons. However, the combination 
forecasts offer ways of incorporating and culling information from a larger number of 
forecasting models. This group of models turned out to outperform the individual models in 
general. Specifically, the discounted combination forecast model (DISC) outperform all the 
single models and the other two combination forecasts (simple mean and principal component) 
models and the performance is largely unaffected by specific economic or business cycle 
situation.  
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